

A dynamical life cycle inventory of steel, aluminium, and composite car bodies-in-white

Peter Stasinopoulos Paul Compston

Outline

- Aim
- Method
- Case study
- System Dynamics model
- Results
- Conclusions
- Recommendations

Aim

Life cycle assessment (LCA) method that can account for **changes over time** in:

Resource consumptions

Energy Water Materials

Environmental impacts Resource depletion Global warming potential Photo oxidant creation potential Acidification potential Ozone depletion potential Water pollution Solid waste Etc.

Life cycle inventory

Life cycle assessment

Method

System Dynamics model

STELLA[™] Dynamical computations Output: car fleet distribution

- *Dynamics*: the way that the state of a system changes over time in response to:
 - internally-generated (endogenous) forces
 - externally-imposed (exogenous) forces

Stocks and flows

Filling and draining a stock

- Operate at *finite rates*
- Source of *delay*
- Source of inertia

(Meadows 2009, p97)

Feedback loops

 A change in a stock feeds back around a loop to adjust the original change

- Reinforcing: amplifies change
- Balancing: *resists* change

Method

System Dynamics model

STELLA[™] Dynamical computations Output: car fleet distribution

Life cycle inventory MS Excel Linear calculations Output: life-cycle energy consumption

Case study

Body-in-white

Load-carrying welded frame to which other moving components are attached

Case study

2 scenarios

• Australian context

Main assumptions

- Production
 - Demand for cars grows with population
 - Demand for cars is met first by recycled LW, then virgin LW, then steel
- Adoption
 - Lightweight BIWs are adopted (S-shaped) in 2010-2030
 - Market share of each type of car is a function of total cost of ownership
- Use
 - Driving intensity is the same for all cars (15,500 km/year)
- Retirement
 - **Useful life** is the same for all cars (22 years)
 - BIW retirement rate is 1/22nd of car fleet per year
- Recycling
 - Recycled lightweight materials are used only for new BIWs

The basic car life cycle

Steel BIW 6 million Steel BIW Production Retirement Steel BIWs В <Useful Lifetime> <Demand for Cars> Virgin Lightweight Zero Virgin Lightweight BIW Retirement BIW Production Virgin Lightweight BIWs В Demand for Cars Useful Lifetime B Recycled Lightweight BIWs Recycled Lightweight Recycled Lightweight Zero **BIW Production** BIW Retirement

The life cycle of each type of car

Car fleet

22

Car fleet

(adapted from Australian Bureau of Statistics 2011)

- Source of *delay* (slow turnover!)
- Production > Retirement → Growth

Life cycle inventory

Key data

Parameter	Steel	Aluminium	Composite	Units
BIW mass	430	300	230	kg
Car mass	1720	1590	1520	kg
Car fuel consumption	9.0	8.67	8.48	l/100km
Total cost of ownership				
Initial (2010)	58,000	54,900	54,300	\$
Final	96,900	92,500	90,300	\$
Energy flow, production				
Virgin	35.2	190	102	MJ/kg
Recycled	19.0	57.5	77.4	MJ/kg
Energy flow, use	2.47	2.57	2.64	kJ/km/kg

Life cycle inventory – results

Life cycle inventory – results

Energy consumption

Life cycle inventory – results

Conclusions

- A System Dynamics approach provides greater *insight* than standard life cycle inventory
- A SD approach reveals:
 - a long *delay* in the transition to lightweight cars
 - material-substitution's small effect on the *fleet*'s energy, rather than its large effect on a *single product*'s energy
- Case study simulations show:
 - the *energy benefits* of composite cars emerge *much sooner* and are about *twice as large* in the long-term as those of aluminium cars
 - energy consumption always grows

Recommendations

- Material-substitution, alone, has *low leverage* for reducing energy consumption
 - Too much investment for too little benefit
- Might get *better results* from adjusting:
 - synergistic tech innovations (e.g., LW + electrification)
 - fuel supply
 - driving intensity
 - driving behaviour

Future work

Questions?

Life cycle inventory – key data

Characteristics of cars

Life cycle inventory – key data

Energy consumption of materials

